Measuring the long arm of childhood in real-time: Epigenetic predictors of BMI and social determinants of health across childhood and adolescence

Publication Year



Children who are socioeconomically disadvantaged are at increased risk for high body mass index (BMI) and multiple diseases in adulthood. The developmental origins of health and disease hypothesis proposes that early life conditions affect later-life health in a manner that is only partially modifiable by later-life experiences. Epigenetic mechanisms may regulate the influence of early life conditions on  later life health. Recent epigenetic studies of adult blood samples have identified DNA-methylation sites associated with higher BMI and worse health (epigenetic-BMI). 

Here, we used longitudinal and twin study designs to examine whether epigenetic predictors of BMI developed in adults are valid biomarkers of child BMI and are sensitive to early life social  determinants of health. Salivary epigenetic-BMI was calculated from two samples: (1) N=1,183 8-to-19-year-olds (609 female, mean age=13.4) from the Texas Twin Project (TTP), and (2) N=2,020 children (1,011 female) measured at 9 and 15 years from the Future of Families and Child Well-Being Study (FFCWS). 

We found that salivary epigenetic-BMI is robustly associated with children’s BMI (r=0.36 to r=0.50). Longitudinal analysis suggested that epigenetic-BMI is highly stable across adolescence, but remains both a leading and lagging indicator of BMI change. Twin analyses showed that epigenetic-BMI captures differences in BMI between monozygotic twins. Moreover, children from more disadvantaged socioeconomic status (SES) and marginalized race/ethnic groups had higher epigenetic-BMI, even when controlling for concurrent BMI, pubertal development, and tobacco exposure. SES at birth relative to concurrent SES best predicted epigenetic-BMI in childhood and adolescence. 

We show for the first time that epigenetic predictors of BMI calculated from pediatric saliva samples are valid biomarkers of childhood BMI that are sensitive to social inequalities. Our findings are in line with the hypothesis that early life conditions are especially important factors in epigenetic regulation of later life health. Research showing that health later in life is linked to early life conditions have important implications for the development of early-life interventions that could significantly extend healthy life span.

Publication Status
In Press